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Project Report 

Data Diagnostics 

The data set that I choose for this project comes from the Wisconsin Breast Cancer sets in 

the UC Irvine Data Repository. The response variable is cancer type, coded as 0 for benign and 1 

for malignant. There were 699 observations, but 16 had some missing value. Therefore to 

simplify it for performing my analysis, I trimmed the set to 683 observations, 444 benign and 

239 malignant, with complete information for each of the 9 predictor variables. These predictor 

variables are as follows: Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, 

Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, Normal 

Nucleoli, and Mitoses. Each of these cancer attributes was observed or measured and 

quantitatively described using a relative scale from 1 to 10. As one might expect, many of the 

predictor values have extreme values, especially the value of 1. Consequently, before doing 

predictive analysis, I ran some basic diagnostics to see the distribution of the predictor variables. 

By building some histograms and quantile plots, I found that almost all of the predictors were 

strongly skewed to the right. To adjust for this, I applied a log transformation to all of them, and 

rebuilt the plots. However, I encountered an interesting predicament in doing this, because there 

are only 10 available values for each predictor. Many of the histograms maintained similar 

distributions after the transformation, but they still become more normal in shape and the 

corresponding quantile plots noticeably improved. Below is an example of this for just one 

variable, EpiCellSize. It follows the pattern I just described, where the histograms merely shift a 



bit, but we see that the box plot looks betters for the transformed variable and outliers are pulled 

in by the transformation. Consequently, I choose to use the log transformations for each skewed 

variable when running those classification methods that are enhanced by having normalized 

predictors. With regard to those methods, although I won’t include the error rates for running 

them with the raw predictors, it is noteworthy that the transformed data usually outperformed the 

raw by a small, but observable amount of roughly .005 to .03. 

 

Distribution and Probability Plot for EpiCellSize
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Linear Discriminant Analysis  

 To begin my classification analysis on the Wisconsin Cancer data, I first performed a 

linear discriminant analysis on it in SAS using priors proportional for weighing the results 

according to the distribution of benign and malignant cancer types. As usual, the re-substitution 

error (.0249) slightly outperformed the cross-validated error rate (.0293).  The resulting 

confusion matrix and corresponding error rate are show below for both the re-substitution and 

the cross-validation. It is immediately noticeable to me that these error rates are quite low, 

especially for a linear discriminant analysis.  

Distribution and Probability Plot for logEpiCellSize
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Number of Observations and Percent Classified 

into Cancer by ReSub 

From 

Cancer 0 1 Total 

0 435 

97.97 

9 

2.03 

444 

100.00 

1 8 

3.35 

231 

96.65 

239 

100.00 

Total 443 

64.86 

240 

35.14 

683 

100.00 

Priors 0.65007 

 

0.34993 

 

 

 

 

Error Count Estimates for Cancer ReSub 

 0 1 Total 

Rate 0.0203 0.0335 0.0249 

Priors 0.6501 0.3499  

 

Number of Observations and Percent Classified 

into Cancer by CV 

From Cancer 0 1 Total 

0 435 

97.97 

9 

2.03 

444 

100.00 

1 11 

4.60 

228 

95.40 

239 

100.00 

Total 446 

65.30 

237 

34.70 

683 

100.00 

Priors 0.65007 

 

0.34993 

 

 

 

 



Error Count Estimates for Cancer CV 

 0 1 Total 

Rate 0.0203 0.0460 0.0293 

Priors 0.6501 0.3499  

 

Consequently, I suspected that there are some very influential predictors that are splitting 

these two classes apart. Using the stepdisc SAS function to complete a selection of variables, I 

was surprised to find that none of them could be removed because each had a significant 

influence on the classification’s effectiveness. The table below shows the retained variables and 

their p-values. From this, I gather that if I was to consider simplifying it, I would probably 

choose to remove Mitoses, EpiCellSize, and/or MargAdhesion. But for now, I will continue to 

use them since they were retained. It is my belief that many of the other methods will yield very 

low error rates as well. Although, this means that this data set might be a poor example for 

comparing different methods, there is a more important result to be realized here. The power to 

predict the type or strength of a cancerous growth is extremely valuable, and it is fantastic to see 

classification methods accomplishing this purpose with very low error rates. 



Statistics for Removal, DF = 1, 673 

Variable 

Partial 

R-Square F Value Pr > F 

logClumpThick 0.0381 26.68 <.0001 

logUniSize 0.0277 19.20 <.0001 

logUniShape 0.0256 17.68 <.0001 

logMargAdhesion 0.0047 3.16 0.0761 

logEpiCellSize 0.0034 2.30 0.1296 

logBareNuclei 0.2001 168.35 <.0001 

logChromatin 0.0252 17.37 <.0001 

logNormNucleoli 0.0221 15.19 0.0001 

logMitoses 0.0033 2.19 0.1390 

 

Quadratic Discriminant Analysis 

 In SAS, I ran a test to determine whether the covariance matrices could be treated as 

equal. The result of this test, shown below, was a chi-squared value of much less than .01. 

Consequently, SAS determined that a quadratic discriminant analysis would be more appropriate 

than a linear one. 

Chi-Square DF Pr > ChiSq 

1600.321444 45 <.0001 

 

The confusion matrices and error rates (below) yielded error rate results that 

underperformed the output of the linear discriminant analysis by about a full percent. Again, the 

re-substitution did slightly better than the cross-validation for the quadradic discriminant 

analysis, just like it did for the linear. When comparing LDA and QDA for this data set, I’m 

interested in more than the total error rate. For both the re-substitution and cross-validation of the 



linear discriminant analysis, the misclassifications are split evenly for both the benign and 

malignant types of cancer. However, for QDA, almost every misclassification is that of a benign 

being classified as malignant (25), rather than the other way around (1). In many instances, I 

suspect that this would be preferred because if some are to be wrong, we want them to be on the 

side of over-estimating the problem, rather than under-estimating. Consequently, I like the 

accuracy of LDA more, but in application, it would probably be wiser and more appropriate to 

use QDA. 

Number of Observations and Percent Classified 

into Cancer by ReSub 

From 

Cancer 0 1 Total 

0 420 

94.59 

24 

5.41 

444 

100.00 

1 0 

0.00 

239 

100.00 

239 

100.00 

Total 420 

61.49 

263 

38.51 

683 

100.00 

Priors 0.65007 

 

0.34993 

 

 

 

 

Error Count Estimates for Cancer ReSub 

 0 1 Total 

Rate 0.0541 0.0000 0.0351 

Priors 0.6501 0.3499  

 



Number of Observations and Percent Classified 

into Cancer by CV 

From 

Cancer 0 1 Total 

0 419 

94.37 

25 

5.63 

444 

100.00 

1 1 

0.42 

238 

99.58 

239 

100.00 

Total 420 

61.49 

263 

38.51 

683 

100.00 

Priors 0.65007 

 

0.34993 

 

 

 

 

Error Count Estimates for Cancer CV 

 0 1 Total 

Rate 0.0563 0.0042 0.0381 

Priors 0.6501 0.3499  

 

K – Nearest Neighbors Method 

 Next, I conducted a classification using K-Nearest Neighbor methods for values of k, 3 

through 7. I found that for each of these, the misclassifications were distributed quite evenly, 

which is similar to the LDA sensitivity and specificity. The resulting cross-validation confusion 

matrices and their error rates are shown below. To summarize the output, I was surprised to find 

that the best error rate (.0249) occurred when k was set to be 6. In other data sets, it usually is 

found that lower values such as k=4 are the best. The resulting error rate of 6 k-nearest 

neighbors, is a slight improvement on LDA by about .005 and QDA by roughly .015. 

Impressively, the range of the errors for the K-nearest neighbor tests was a mere .0088, where 

k=3 had the worst error of .0337. The differences between them could quite possibly be subtle 



enough to be white noise. Personally, I would suspect that for predicting onto a test set, using k-

values of 4, 5, or 6 would be just fine, considering that these 3 values yielded the best errors and 

have been consistently more effective for other data sets. 

Number of Observations and Percent 

Classified into Cancer k=3 

From 

Cancer 0 1 Total 

0 433 

97.52 

11 

2.48 

444 

100.00 

1 12 

5.02 

227 

94.98 

239 

100.00 

Total 445 

65.15 

238 

34.85 

683 

100.00 

Priors 0.65007 

 

0.34993 

 

 

 

 

Error Count Estimates for Cancer k=3 

 0 1 Total 

Rate 0.0248 0.0502 0.0337 

Priors 0.6501 0.3499  

 



Number of Observations and Percent 

Classified into Cancer k=4 

From 

Cancer 0 1 Total 

0 434 

97.75 

10 

2.25 

444 

100.00 

1 9 

3.77 

230 

96.23 

239 

100.00 

Total 443 

64.86 

240 

35.14 

683 

100.00 

Priors 0.65007 

 

0.34993 

 

 

 

 

Error Count Estimates for Cancer k=4 

 0 1 Total 

Rate 0.0225 0.0377 0.0278 

Priors 0.6501 0.3499  

 

Number of Observations and Percent 

Classified into Cancer k=5 

From 

Cancer 0 1 Total 

0 434 

97.75 

10 

2.25 

444 

100.00 

1 9 

3.77 

230 

96.23 

239 

100.00 

Total 443 

64.86 

240 

35.14 

683 

100.00 

Priors 0.65007 

 

0.34993 

 

 

 

 



Error Count Estimates for Cancer k=5 

 0 1 Total 

Rate 0.0225 0.0377 0.0278 

Priors 0.6501 0.3499  

 

Number of Observations and Percent 

Classified into Cancer k=6 

From 

Cancer 0 1 Total 

0 435 

97.97 

9 

2.03 

444 

100.00 

1 8 

3.35 

231 

96.65 

239 

100.00 

Total 443 

64.86 

240 

35.14 

683 

100.00 

Priors 0.65007 

 

0.34993 

 

 

 

 

Error Count Estimates for Cancer k=6 

 0 1 Total 

Rate 0.0203 0.0335 0.0249 

Priors 0.6501 0.3499  

 



Number of Observations and Percent 

Classified into Cancer k=7 

From 

Cancer 0 1 Total 

0 433 

97.52 

11 

2.48 

444 

100.00 

1 9 

3.77 

230 

96.23 

239 

100.00 

Total 442 

64.71 

241 

35.29 

683 

100.00 

Priors 0.65007 

 

0.34993 

 

 

 

 

Error Count Estimates for Cancer k=7 

 0 1 Total 

Rate 0.0248 0.0377 0.0293 

Priors 0.6501 0.3499  

 

Logistic Regression 

 Following the k-nearest neighbor method, I employed logistic regression on my dataset. 

The generated ROC curve below looks truly fantastic. I don’t think I’ve seen a better one in any 

previous projects or examples. The classification table is also very impressive compared to most 

others. Evaluating the error at the standard c=.5, I found a total error of .032. This is not quite as 

good as LDA or k-NN, but I think logistic regression could be extremely useful to this problem. 

By using different values of c, we can alter the specificities and sensitivities to reduce the 

number of missed malignant cancer growths. This would benefit medical performance greatly, 

and it appears to have a better error rate than QDA and comparable to our other methods (c=.3, 

error = .026). 



 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event 

Non- 

Event Event 

Non- 

Event Correct 

Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.300 233 432 12 6 97.4 97.5 97.3 4.9 1.4 

0.500 229 432 12 10 96.8 95.8 97.3 5.0 2.3 

0.700 222 435 9 17 96.2 92.9 98.0 3.9 3.8 

 

 Using a selection of variables, this time EpiCellSize, UniSize, and NormNucleoli were 

removed. The new ROC curve looked almost identical to the curve above, with an area of .9955. 

As we can see from the table below, variable selection actually improved the error rates slightly 
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Area Under the Curve = 0.9954



for the lower c-values. Consequently, I suspect that some of those removed variables were 

simply noise that had almost no value to the logistic regression.   

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event 

Non- 

Event Event 

Non- 

Event Correct 

Sensi- 

tivity 

Speci- 

ficity 

False 

POS 

False 

NEG 

0.300 234 432 12 5 97.5 97.9 97.3 4.9 1.1 

0.500 230 432 12 9 96.9 96.2 97.3 5.0 2.0 

0.700 220 435 9 19 95.9 92.1 98.0 3.9 4.2 

 

Classification and Regression Trees 

 A Classification and Regression Tree is possibly the best method for understanding and 

interpreting. By running a test to find how many terminal nodes I should use, I found that a 14 

node tree was the comparison for the 1-SE rule. Possible sizes of 3, 5, 8, and 9 all met the criteria 

of the 1-SE rule. By running each of these, I found that a 3-node tree was oversimplified, while 5 

and 9 node trees each had a split where benign was the majority at both nodes of the split. The 8-

node tree is the best in my opinion. It has no such problem at any of it’s splits, it’s not obviously 

over-simplified, and it’s still relatively easy to understand. The tree and confusion matrix below 

indicate that the nodes appear to be extremely pure. However, the error rate for this method 

comes out to be .0483. This is the worst error of any of the methods so far. However, the tree 

does help to see which variables are most important and where they are splitting on. This 

information could certainly help medical staff to have a quick idea of whether a cancer growth is 

malignant by checking just a few characteristics, such as UniShape > 2, BareNuclei & 

ClumpThick > 5, and a high magnitude for UniSize. 



 

 

Classification Tree for Cancer
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Confusion Matrices 

 Actual 

Predicted 
Error 

Rate 0 1 

Model Based 0 433 11 0.0248 

 1 7 232 0.0293 

Cross Validation 0 427 17 0.0383 

 1 16 223 0.0669 



Random Forest 

 Switching to R, I ran my data through the random forest algorithm. From the confusion 

matrix and percent correctly classified, I can see this method has an error of .0279. This is better 

than almost all the cross-validated errors from previous methods, with the exception of the best 

k-nearest neighbors. I also like that it seems to favor misclassifying more benign growths, than 

malignant ones. It’s quite effective and tends toward the implementation I’m looking for.  

    0   1 class.error 
0 432  12  0.02702703 
1   7 232  0.02928870 

 

PCC: 97.21014 

 

 I then used random forest to evaluate variable importance. The chart below suggests that 

the least important variables are Mitoses and EpiCellSize. This is very consistent with the 

stepdisc output, however the logistic selection is quite contradicting. Perhaps, It may be that 

UniSize is quite collinear with other variables, resulting in it’s removal earlier. I’m inclined to 

suspect that random forest’s variable importance is more reliable though, especially with 

stepdisc’s selection method and CART’s variables to split on validating it.  

 



 With this plot in mind, I tried a few variations of my original random forest where I 

removed a few of the less important variables. By eliminating Mitoses and EpiCellSize from the 

classification, I was able to get an error of .0323 from the matrix below. This seems to imply that 

these 2 variables are mostly noise and have little influence on improving our classification.  

    0   1 class.error 
0 432  12  0.02702703 
1  10 229  0.04184100 

 

PCC: 96.76916 

 

Ada Boosting 

 My next method to try was Ada Boosting. I can clearly see from this matrix, that the 

initial error for this method is the best yet (.0117). Unfortunately, this is likely over-predicting, 

because of the following matrix which represents the accuracy when doing cross-validation on 

Ada Boosting. This error of .0307 is right in the normal range of errors I’ve seen and started to 

expect. Thus, I think ada-boosting does fine, but is probably not the best for this problem unless 

it can be proven to be just as accurate on a test dataset without doing any cross-validation.  

          Final Prediction 
True value   0   1 
         0 437   7 
         1   1 238 

 

PCC: 98.8287 

 

Cross-Validated 
      0   1 
  0 433  11 
  1  10 229 

 

PCC: 96.9252 



Gradient Boosting Machines 

 Gradient Boosting Machines are often a very accurate form of classification if they can 

be tuned properly. To preform this analysis, I first obtained the out-of-bag error rates for the 

method and for when it is cross-validated. The resulting cross-validation error of .0351 is not 

particularly great when compared to some of the others which have been between .03 and .025.  

"Percent Correctly Classified = " "97.22"  
 "Specificity = "                  "97.75"  
 "Sensitivity = "                  "96.23" 

 

Cross-Validated 
"Percent Correctly Classified = " "96.49"  
 "Specificity = "                  "97.52"  
 "Sensitivity = "                  "94.56" 

 

 So using tuning procedures, I found the optimal shrinkage (.1), number of trees (25), and 

interaction depth (16). Implementing these criteria back into the gradient boosting machine 

algorithm, yielded the following improved confusion matrices for the raw and cross-validated 

analysis. Both of these error rates outperform their corresponding errors from above, and the 

cross-validated error of .0307 shows that this method is yielding similar results to the others. 

Perhaps gradient boosting machines aren’t the best for this dataset, for some reason. While they 

often are very accurate, the results were merely average for classifying cancer types. 

      0   1 
  0 434  10 
  1   3 236 

 

"Percent Correctly Classified = " "98.1"   
 "Specificity = "                  "97.75"  
 "Sensitivity = "                  "98.74" 

 



 Cross-validated 
     0   1 
  0 431  13 
  1   8 231 

 

"Percent Correctly Classified = " "96.93"  
 "Specificity = "                  "97.07"  
 "Sensitivity = "                  "96.65"  

 

Support Vector Machines 

 My last method to try was a Support Vector Machine. Surprisingly, it’s cross-validated 

error is only .0293, which is better than the final results from both ada-boosting and gradient 

boosting. The initial output also doesn’t appear to over-predict as much, having a more 

reasonable error of .0249, rather than .019 (GBM) and .012 (ADA). It doesn’t seem to be quite as 

accurate as random forest and some of the K-NN methods have been. However, I’d say it’s fairly 

effective for the job and worth running regardless in case it does out-perform other methods. 

      0   1 
  0 433  11 
  1   6 233 

 

"Percent Correctly Classified = " "97.51"  
 "Specificity = "                  "97.52"  
 "Sensitivity = "                  "97.49" 

 

Cross-validated  
     0   1 
  0 431  13 
  1   7 232 

 

"Percent Correctly Classified = " "97.07"  
 "Specificity = "                  "97.07"  
 "Sensitivity = "                  "97.07" 

 



Conclusion 

 The goal of this project has been to correctly classify cancerous growths as benign or 

malignant. After running each classification method, I observed that the method with the best 

out-of-bag re-substitution error was Ada-Boosting (.0117) and the best cross-validated error was 

using K-Nearest Neighbors where k was set to 6 (.0249). It may seem tempting to conclude that 

these are the best methods for prediction and therefore primarily use them for predicting onto un-

known observations. However, I don’t believe that this is the case after evaluating each method. 

The fantastic error from Ada-Boosting is likely over-fit and would require a great deal of testing 

to prove otherwise. K-NN methods did a good job of reducing the total number of 

misclassifications, but it could well be random chance that this method came out on top 

considering how close all of the error rates were. I actually believe other methods would have 

more value in their application.  

While the Classification Tree is not quite as accurate, it is very easy to understand and 

apply for medical professionals that may not be able to collect data for each of the predictor 

variables. The Random Forest method is also extremely valuable for this purpose. It has an error 

rate (.0323) superior to the Classification Tree, but since most other methods are performing just 

as well or better, it’s worth is actually found in the way it does variable selection. From the 

Random Forest method, I’m able to rank the predictor variables from most to least important as 

follows: Uniformity of Cell Size, Bare Nuclei, Uniformity of Cell Shape, Clump Thickness, 

Bland Chromatin, Normal Nucleoli, Marginal Adhesion, Single Epithelial Cell Size and finally 

Mitoses. With this information, other classification methods can be simplified by removing some 

of the least influential predictors. It can also help those collecting data or evaluating patients to 

know which predictors to pay more attention. 



 Finally, if I had to recommend one tunable method for minimizing the classification error 

rate, it would be Logistic Regression. Usually, this is interpreted for when the parameter c is .5. 

However, as I mentioned with regard to QDA and Logistic, it could be in the best interest of 

cancer patients to focus on improving the sensitivity of the method. As we saw in the confusion 

table for logistic regression, using a lower value of c such as .3 yielded a total error rate of only 

.025 and a sensitivity error of .021. I suspect that by looking at even more values for c, an even 

better error could be found for both of these. With this level of total accuracy while emphasizing 

reducing the sensitivity error, Logistic Regression should be the best method for applying to 

future data sets where the type of cancer is un-known. 


